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Abstract: Various indicators, such as protein modification biomarkers and lipid peroxidation products, 
have been used in research to show a relationship between diabetes and oxidative stress. Due to their ca-
pacity to damage lipids, proteins, and DNA, free radicals are thought to play a key role in the initiation and 
progression of late diabetes complications. Oxidative stress causes a number of clinical illnesses, including 
rheumatoid arthritis, diabetes, and cancer. Coronary artery disease, neuropathy, nephropathy, retinopathy, 
and stroke are all consequences of DM caused by free radicals and oxidative stress. In-vivo studies back up 
the theory that hyperglycemia causes oxidative stress, which leads to endothelial dysfunction in diabetes 
patients’ blood vessels. Increased glucose and insulin levels, as well as dyslipidemia, produce macroan-
giopathies, which lead to oxidative stress and atherosclerosis in diabetic patients.

Objective- Exogenously and endogenously produced reactive oxygen and nitrogen species promote oxida-
tion of cellular molecules by transferring electrons to them. Exogenous antioxidants can be obtained, and 
the body’s antioxidant defence system comprises vitamins A, C, and E, glutathione (GSH), and the enzymes 
superoxide dismutase (SOD), catalase, and others. Hyperglycemia causes the creation of free radicals, 
which causes an imbalance between free radical formation and the antioxidant defence system, resulting in 
oxidative stress. Increasing data suggests that oxidative stress plays a key role in diabetes mellitus devel-
opment (DM). Increased formation of advanced glycation end-products (AGEs), polyol pathway, increased 
expression of the receptor for AGEs and its activating ligands, activation of protein kinase C (PKC) iso-
forms, and overactivity of the hexamine pathway are the main pathways involved in diabetic pathogenic 
complications

Keywords: Piperine, chemical constituents, bioenhancer, formulations, and pharmacological ac-
tivity.
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1. Introduction

More than 180 million individuals in 
industrialised and developing countries 
have diabetes, and the number is expected to 
quadruple by 2030. (1). Diabetes mellitus is 
characterised by an increase in blood glucose 
levels and a decrease in insulin production or 
sensitivity to its goals (2). Diabetic problems 
damage the eyes, kidneys, nerves, and blood 
vessels as a result of long-term hyperglycemia 
and oxidative stress (3). Sulphonylureas and 
arginine, in addition to glucose, stimulate beta 
cells to release insulin, and glucose is a major 
determinant of insulin secretion (4). Type 1 
diabetes is an autoimmune illness caused by 
the death of pancreatic cells. It accounts for 
around 80% to 90% of diabetes in children and 
adolescents (5, 6). T-cells and B-cell responses 
both have a role in autoimmune type 1 diabetes 
(7). The major symptoms of type 1 diabetes 
include polydipsia, polyuria, polyphagia, abrupt 
weight loss, and blurred eyesight (7). Type 2 
diabetes mellitus accounts for approximately 
90% of all diabetes cases. The majority of these 
patients are adults, and obesity is the leading 
cause. Adult diabetes is a term used to describe 
diabetes that develops beyond the age of 40. 
The release of plasma free fatty acids (FFA) and 
tumour necrosis factor alpha (TNFα) by “full” 
adipocytes is one of the key causes of type 2 
diabetes and obesity. [8,9,10]

OxidativestressandDiabetes 

Oxidative stress is a type of physiological 
stress that occurs when the antioxidant defence 
system and free radical production in the 
body are out of balance (11, 12). Vitamins 
A, C, and Glutathione, as well as superoxide 
dismutase, catalase, and other antioxidant 
defencesystems(13), and free radical production 
comprises ROS and RNS in the body. When 
reactive oxygen and nitrogen species are 
present in low or normal amounts, they are 

helpful. However, at high concentrations, 
they cause oxidative stress, which is the root 
of many diseases such as Diabetes, Kidney 
disease, Lung cancer, etc (14). The creation of 
ATP by cells when they use oxygen, as well as 
the generation of free radicals by mitochondria, 
are all probable sources of Reactive Oxygen 
Species (ROS). Reactive Nitrogen Species 
(RNS) and other biological redox products 
are common. Superoxide, hydrogen peroxide, 
hydroxyl radical, singlet oxygen, and RNS 
nitrous oxide, peroxynitrate, nitric oxide, and 
peroxynitrite (15,16) are examples of ROS.ROS 
and RNS have favourable effects on cellular 
response and immunological function at low or 
moderate levels. They cause oxidative stress at 
high doses, which is a harmful process that can 
harm all cell structures. (17, 18, and 19). Beta 
cells have lesser levels of antioxidant enzymes, 
making them more vulnerable to oxidative and 
cytotoxic stress (20). Hyperglycemia-induced 
oxidative stress and inflammation increased 
apoptosis and disrupted insulin secretion by 
causing a shift in gene expression regulation 
(21).

Oxidative Stress-Induced Cellular Damage
AProteins

In vitro ROS react with protein amino acid 
residues, resulting in nonfunctional proteins. 
Because proteins have distinct primary, 
secondary, and tertiary protein structures, ROS 
can react with any biomolecule, including 
proteins, altering their structure and making 
them more vulnerable to proteolysis (23).

In vivo studies in diabetic rats revealed a 
decrease in serum proteins, which could be 
due to the following factors: a) decreased 
amino acid uptake (24) b) a significantly lower 
concentration of a variety of essential amino 
acids (25) c) an increased conversion rate of 
glycogenic amino acids to CO2 and H2O, and 
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d) a reduction in protein synthesis secondary to 
a decreased amount and availability of mRNA 
(26).

In vivo studies in diabetes-induced rats revealed 
a decrease in serum proteins, which could be 
due to the following factors: a) decreased 
amino acid uptake (24) b) a significantly lower 
concentration of a variety of essential amino 
acids (25) c) an increased conversion rate of 
glycogenic amino acids to CO2 and H2O, and 
d) a reduction in protein synthesis secondary to 
a decreased amount and availability of mRNA 
(26).

B  Lipids
Since plasma membrane is made up of 

polyunsaturated fatty acids (PUFA), which are 
an easy target for ROS due to their numerous 
double bonds, a shift in membrane receptors 
occurs. (27). Peroxynitrite (ONOO) oxidises 
LDL but does not attach to LDL receptors, 
allowing scavenger receptors in macrophages 
to pick up LDL and generate foam cells, 
resulting in atherosclerotic plaques (28,29).Sato 
et al. (30) published the first evidence of lipid 
peroxidation in DM, noting that the levels of 
lipid peroxides in plasma of DM patients were 
substantially higher than that of normal persons

Lipid peroxidation, which is the most 
researched field of research when it comes to 
ROS, is a significant biomarker of oxidative 
stress (31). After reacting it with thiobarbituric 
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Figure 1. Shows ROS react with susceptible amino acids of proteins and polyunsaturated lipid-
schange the structure of lipids and proteins.
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acid, malondialdehyde (MDA) is generated as a 
result o 1f lipid peroxidation, and it can be used 
to assess lipid peroxides (32).

ROLES OF ORGANELLES IN OXIDATIVE 
STRESS

Mitochondria

As electrons transfer through the electron 
transport system, proton move into 
intermembrane space, generating a proton 
gradient that drives ATP synthase, but some 
electrons leak out of complex 1 or 3 and interact 
with molecular oxygen to form superoxide 
anion, mitochondria is rightly called the 
powerhouse of the cell. Hyperglycemia causes 
more oxygen to be released, which leads to an 
increase in the generation of reactive oxygen 
species (ROS) (33-35).

Furthermore, enzymes such as acyl-CoA 
dehydrogenase and glycerol phosphate 
dehydrogenase can produce ROS (36). By 
increasing mitochondrial superoxide buildup in 

the retina, inactivation of complex 3 activities 
worsens diabetic retinopathy outcomes (37).

Hyperglycemia caused superoxide to develop 
in the mitochondrial electron transport chain 
by raising the inner mitochondrial membrane 
potential through the Krebs’s cycle (37). 

Hyperpolarization of the mitochondrial 
membrane potential and an increase in the 
ATP/ADP ratio occurred as a result of this 
scenario, followed by inhibition of complex-
III and electron buildup at coenzyme Q. As a 
result of the partial reduction of O2, free radical 
production is accelerated, and ATP synthesis is 
reduced  (38,39).

Endoplasmic reticulum stress and insulin 
resistance

Beta pancreatic cells have a well-developed 
endoplasmic reticulum (ER), which is the 
organelle responsible for protein folding and 
exporting. Because they must produce and 
secrete significant amounts of insulin, they 
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Figure 2. Shows hyperglycemia produces more and more superoxides which end up with 
mitochondrial DNA damage leads to Apoptosis of beta-pancreatic cells.
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have a well-developed ER (40-42)

Protein disulfide isomerases (PDI), endoplasmic 
reticulum oxidoreductase 1 (ERO1), and 
glutathione (GSH) combine as a chaperone-like 
effect in ROS production, which in turn inhibits 
disulfide bond formation, causing endoplasmic 
reticulum ER stress by increasing the amount of 
misfolded proteins in the ER lumen.

Hyperglycemia or an increase in misfolded 
proteins triggers the unfolded protein response 
(UPR). In normal physiological settings, the 
three transmembrane proteins Inositol-required 
kinase 1 (IRE1), protein kinase-like ER kinase 
(PERK), and activating transcription factor 6 
(ATF6) are all inactive. When the UPR coping 
mechanisms fail to restore ER stability or 
homeostasis, the ER stress response ensues. 
The separation of Bip from ER transmembrane 
proteins causes ER stress to activate them. 
(43,44). NO generates ER stress and the 
production of unfolded proteins by depleting 
ER Ca2+. The cell responds to unfolded 
proteins in three ways: upregulation of chaperon 

proteins, upregulation of chaperon proteins, 
and upregulation of chaperon proteins.(45,46)

Mechanisms of Hyperglycemia-Induced 
Damage

Five main major mechanisms are 
underlying hyperglycemia-induceddiabetic 
vascular damage which leads to diabetic 
complication,microvascular and macrovascular 
damage. ROS responsible for the activation of 
these five mechanisms which is produced due to 
mitochondria over activation-  polyol pathway, 
increased intracellular formation of advanced 
glycation end-products (AGEs), increased 
expression of the receptor for advanced 
glycation end products and its activating 
ligands(RAGE), activation of protein kinase 
C (PKC) isoforms, and overactivity of the 
hexamine pathway. . However, the results of 
clinical studies in which only one of these 
pathways is blocked have been disappointing 
(47,48)

Increase polyol pathway
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Figure 3. ROS inhibits proper disulfide formation in protein folding cause dissociation of Bip from 
ER transmembrane proteins like PERK, IRE1, ATF6 cause ER stress. Activation of these proteins 

causes apoptosis of cells by expression of CHOP gene.
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Nerve, retina, lens, glomerulus, and vascular 
cells rich in Aldose reductase(49).When the 
body experiences hyperglycemia, the enzymes 
aldose reductase and sorbitol dehydrogenase 
are active, converting glucose to sorbitol and 
sorbitol to fructose, respectively (50). As a 
result of these reactions, NADPH is oxidised 
and NAD+ is reduced, which is employed as 
a cofactor by aldose reductase and sorbitol 
dehydrogenase, respectively, causing the 
following:-

1, Because NADPH is utilised as a cofactor to 
replenish reduced glutathione (GSH), oxidation 
of NADPH causes a drop in NADPH content 
in the cell, which lowers the activity of the 
reducing enzyme Glutathione, resulting in more 
superoxides being produced (49-50).

Sorbitol does not permeate through the cell 
membrane and accumulates intracellularly 
because it is hydrophilic. Furthermore, sorbitol 
is tough to digest (51,52,53).

2, Sorbitol produced by aldose reductase is 
oxidised to fructose by sorbitol dehydrogenase, 
which uses NAD+ as a cofactor to make NADH, 
which serves as a substrate for NADH oxidase, 
which produces reactive oxygen species (ROS) 
(54,55).

The synthesis of diacylglycerol, a key activating 
cofactor for protein kinase-C, is increased 
by hyperglycemia inside the cell(56,57) 
PKC changes gene expression and protein 
function when it is activated by intracellular 
hyperglycemia (57).

Increased Intracellular AGE Formation

Advanced glycation end-products form non-
enzymatically as a result of the reaction of 
reducing sugars with free amino groups, which 
occurs not only in proteins but also in lipids 
and nucleic acids and is known as Maillard’s 
reaction (58). The first reaction produces an 
unstable product (Schiff base), which undergoes 
rearrangement to produce a more stable product 
(amadori product), which then undergoes 
oxidation, dehydration, and cyclization 
processes to produce a glycated molecule 
(59). AGEs cross-link proteins, resulting in 
proteinase-resistant aggregates.  (60).

IgG accounts for 75% of the total 
immunoglobulin in serum (61) It has the 
longest half-life of all the immunoglobulins, 
which makes it a prime target for ROS because 
the longer the half-life, the more vulnerable to 
ROS  (62)Glycation of IgG causes a change in 
its structure and function, which is linked to 
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inflammation and a target for autoantibodies in 
individuals with rheumatoid arthritis (63)

Glycation of collagen and elastin can cause 
skeletal fragility and osteoblast differentiation 
by modifying characteristics such as the triple 
helix, solubility, and flexibility, which reduce 
toughness and stiffness. (64-69)Glycated 
collagen affects endothelial cell function, which 
contributes to the formation of atherosclerotic 
plaques. (69)

 Several in vitro investigations have established 
the critical role of glycated albumin in platelet 
activation and aggregation (70) and glycated 
albumin can impact glucose metabolism in 
both skeletal muscle and adipocyte. (71)
Glycated fibrinogen hinders fibrinolysis and 
increases fibrin gel permeability, resulting 
in a thrombogenicfibre network. (72,73) 
The interaction of AGEs with RAGE on 

macrophages activates p21ras and the mitogen-
activated protein (MAP) kinase signalling 
pathway, which leads to nuclear factor-B (NF-
B) activation (74). Which, in turn, modify gene 
transcription for a variety of reasons, including 
the production of pro-inflammatory cytokines 
like interleukin-1 (IL-1), tumour necrosis 
factor- α(TNF-α), and adhesion molecules 
like collagen.In order to modulate immune 
surveillance and inflammation, VCAM-1 works 
in conjunction with other adhesion molecules. 
Excessive levels of ROS, oxidised low density 
lipoprotein (oxLDL), 25-hydroxycholesterol, 
turbulent shear stress, high hyperglycemia, 
and microbial stimulation of endothelial cell 
TLRs all increase VCAM-1 expression. The 
transcription factors nuclear factor kappa B 
(NFB), SP-1, Ap-1, and interferon regulatory 
factor-1 influence the activation of VCAM-1 
gene expression. (75-79)

Chemistry & Biology Interface, 2021, 11, 6, 182-196

 

Bind with receptor 

IgG, Albumin, Fibrin, Hb, Collagen 

Glycated fibrinogen, collagen, 
albumin, IgG, HbA1c 

+ 
 

Glucose 

Protein 

Schiff base 

Amadori 

AGE 
RAGE ROS 

Activate Stress Pathway 

JNK/SAPK, P38MAPK, 
NFķB, Hexoseamine 

pathway 

 

Diabetic nephropathy/Diabetic 
neuropathy/Diabetic 

retinopathy 

 

Figure 5: AGE  role in diabetic complication by interacting with RAGE , produce ROS activate 
stress pathway result in diabetic complication.



Chemistry & Biology Interface Vol. 11 (6), November - December 2021189

Following the interaction of AGEs with RAGE 
in endothelial cells, NF-B and hemeoxygenase 
mRNA, both indicators of oxidative stress, are 
activated .(80) Following the interaction of 
AGEs with RAGE in endothelial cells, NF-B 
and hemeoxygenase mRNA, both indicators of 
oxidative stress, are activated, according to a 
study (81)

The aetiology of diabetic problems is 
complicated by the interaction of AGEs with 
their cellular receptors .(75)

PKC pathway :

Hyperglycemia causes a rise in glycolysis, 
intermediate dihydroxyacetone phosphate, and 
glycerol-3-phosphate, all of which boost de 
novo DAG synthesis. (82) There are two forms 
of PKC conventional PKC (cPKC) isoforms 
(PKC-α, -β1, -β2, and -γ) are activated by 
phosphatidylserine (PS), calcium, and DAG or 
phorbol esters, whereas novel PKCs (nPKC; 
PKC-δ, -ε, -θ and -η) by other than calcium. 
The atypical PKCs (aPKC; PKC-ζ and -ι/λ) are 
not activated by calcium, DAG, or PMA(83).

Diabetes sequelae indicated a rise in total 
DAG content in both vascular and nonvascular 
tissues from diabetic animal models and 
patients, including renal glomeruli,(84-86), 
heart, aorta,(87), and retin(88), liver (89)), 
skeletal muscles,(90). Tight junction between 
endothelial cells provide a vascular barrier, 
although PKC enhances the permeability of EC 
albumin and other macromolecules in diabetic 
circumstances. (91,92) PKC influences the 
expression and activity of vascular endothelial 
growth factor (VEGF) and increases the 
synthesis of thromboxane endothelin-1 (ET-1) 
through modifying the bioavailability of NO 
(93,94,95)Endothelial dysfunction occurs as 
a result. Different forms of PKC activated by 
Hyperglycemia among which PKC-α, -β-δ, and 
–ε involved in retina dysfunction. PKC-α, -β-
δ, and –ε altering enzymes NO, ET-1, VEGF, 
PDGF, etc involved EC and pericytes. (96-99)
Many in vitro investigations have shown that 
different versions of PKC perform diverse roles 
in the proximal tubules of the kidney and the 
glomerulus. By changing NADPH and boosting 
renal serum and urinary VEGF, PKC- α causes 
superoxide to develop. (100,101)The deletion 
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Figure 6: Denovo synthesis of DHA in hyperglycemia  activate PKC pathway, result in activation 
of different factors lead to produce ROS , complicate diabetes.
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of the TGF gene protects diabetic kidney disease 
in animals. TGF- causes the development of 
reactive oxygen species (ROS), which impairs 
glomerular filtration.(102)

Hexosamines Pathway

Excess glucose is provided by hyperglycemia, 
and the rate-limiting enzyme glutamine: 
fructose-6-phosphate (F-6-P) amidotransferase 
(GFAT) allows additional fructose 6 phosphate 
to enter HSP, forming the primary end product 
UDP-N-acetylglucosamine (UDP-GlcNAc). 
Which modulates glucose entrance into 
the HSP pathway by acting as an allosteric 
feedback inhibitor of GFAT (103) UDP-N-
acetylglucosaminetransferase (O-Glc NAC 
transferase) is an enzyme that uses UDP-N-
acetylglucosamine (UDP-GlcNAc). Many 
proteins/transcription factors are acylated by 
transferring N-acetyl glucosamine to Olinkage 
of serine or threonine residues in certain 
proteins55 IRS-1 and 2, Glut 4, glycogen 
synthase (104,105)and RNA polymerase II 
(106)

Sp1 protein with an O-GlcNAc modification 
that binds to Sp1 binding sites of plasminogen 
activator inhibitor 1, (PAI-1) triggered by 
hyperglycemia. In vascular smooth muscle 
cells (107), aortic endothelial cells (108)
and mesangial cells (109), Sp1 regulates 
hyperglycemia-induced activation of the PAI-1 
promoter, which is regarded to be an important 
element in the development of vascular disease 
in diabetes.

The promoter sequence of TGF-β homologs 
glucose response elements of genes of glucose 
metabolic proteins involved in glycolysis, 
such as pyruvate kinase. As a result of their 
association with the stimulatory factors USF-1 
and 2, GREs produce TGF-β1 overexpression 
in hyperglycemic conditions. TGF-β synthesis 
has been shown to be a distinct impact of high 

glucose levels (110,111).

 
Glucose 

F-6-p 

UDP-GlcNAc 

 

Modified TF, Sp1 

 

 Gene Induction PAI-1, TGF-β  

Oxidative stress, Diabetic complication 

Figure 7:Hyperglycemia supplies extra glucose, 
and the rate-limiting enzymes enables more 
fructose 6 phosphate into HSP, resulting in the 
major end product UDP-N-acetylglucosamine 

(UDP-GlcNAc).

CONCLUSION-

Several research investigations have indicated 
that oxidative stress is a crucial factor in the 
occurrence and consequences of diabetes, as 
mentioned in this review. 

As discussed above, there is substantial 
evidence from in vitro and in vivo studies that 
hyperglycemia and perhaps raised FFA levels  
cause the formation of ROS and RNS, resulting 
in enhanced oxidative stress in a number of 
organs. The mechanism becomes overwhelmed 
in the absence of a suitable compensating 
response from the cell’s natural antioxidant 
network, resulting in redox imbalance and 
aggravating the problem. The reactive species 
not only cause direct cell damage by oxidising 
DNA, protein, and lipids, but they also cause 
indirect cell damage by activating stress-
sensitive intracellular signalling pathways such 
NF-B, p38 MAPK, JNK/SAPK, hexosamine, 
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PKC, AGE/RAGE, sorbitol, and others. 
Activation of these pathways leads to increased 
production of a variety of gene products that 
induce cellular damage and play a key role in 
the development of diabetes’ late consequences. 
Furthermore, recent evidence from in vitro and 
in vivo studies suggests that activation of the 
same or similar stress pathways leads to insulin 
resistance and decreased insulin production. As a 
result, we propose that hyperglycemia and FFA-
induced increases in ROS and oxidative stress, 
activation of stress-sensitive pathways, and the 
development of not just late complications of 
diabetes, but also insulin resistance and -cell 
dysfunction, are all linked.
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