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Abstract: A highly probabilistic binary quantitative structure-activity relationship (binary-QSAR) model 
has been developed to predict substrates and non-substrates of P-glycoprotein (Pgp). A total of 123 
compounds, classified as Pgp substrates/non-substrates, on the basis of the efflux ratio from Pgp 
monolayer efflux assays were selected in this study. Binary-QSAR model is developed on training set of 
99 diverse compounds (36 substrates and 63 non-substrates) using 12 information rich descriptors. 
Solubility, Lipinski violation score, partition coefficient, CYP2D6 enzyme substrate probability etc. were 
some of the important descriptors used in developing binary-QSAR model. This model showed excellent 
overall prediction accuracy of 100% on substrates and non-substrates for training set of 99 compounds. 
Further, the leave-one-out cross-validated prediction accuracy was 96.9% on substrates and non-
substrates. When applied to the test set of 24 compounds (8 substrates and 16 non-substrates), model 
correctly predicted the behavior 6 out of 8 substrates (75%) and 15 out of 16 non-substrates (94.4%). 
These three mispredictions were found to lie in the limitation zones of Pgp monolayer efflux assay, where 
it is difficult to classify compounds as Pgp substrate or non-substrate. Present model can be seen as in 
silico simulation for predicting the result of in vitro Pgp monolayer efflux assay. The results suggest that 
it is a powerful tool to identify substrate or non-substrate nature of compounds, and can be used in high-
throughput screening. 
 
 
1.  Introduction 
 
P-glycoprotein (Pgp) is a well characterized 
transporter family of adenosine triposphate 
binding cassette. It is extensively distributed 
and expressed in normal cells of all species, 
---------------------------------------------------------------- 
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such as, columnar epithelial cells of lower 
gastrointestinal tract, capillary endothelial 
cells of brain and testis, canalicular surface 
of hepatocyte and apical surface of proximal 
tubule in kidney [1]. Pgp limits oral 
absorption, restrict blood-brain barrier 
penetration and modulate hepatic, renal, or 
intestinal elimination [2-4]. Drugs from 
different therapeutics classes such as 
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calcium channel blockers, neuroleptics, 
antiarrythmics, antimalarial, antifungal and 
anticancer agents are known as substrates of 
Pgp [5]. Over expression of Pgp have 
decreased efficacy of several drugs, and is a 
major cause of multi-drug resistance in 
different diseases [6]. Identification and 
classification of Pgp substrates from its non-
substrates and inhibitors is essential in drug 
candidate selection and optimization. 
 
Different experimental and theoretical 
methods have been developed to unravel the 
Pgp modulating activity of the compounds, 
by modeling of Pgp substrates, non-
substrates and inhibitors. Experimental 
methods mainly include, (i) Pgp monolayer 
efflux assay, (ii) Pgp ATPase assay and (iii) 
Calcein-AM inhibition assay. Polli et al. 
with the use of Pgp monolayer efflux assay, 
analyzed 66 compounds, and showed that 
this assay method is more reliable to classify 
compounds as Pgp substrates at 
low/moderate permeability [5]. Theoretical 
methods include different physico-chemical 
properties such as logP, molecular weight, 
surface area, aromaticity, amphiphilicity, 
proton basicity, hydrogen bonding capacity; 
and molecular structural features such as 
two electron donor groups with a spatial 
separation of  (2.5±0.3)Å/ or (4.6±0.6)Å or 
three electron donor groups with a spatial 
separation of outer two groups of 
(4.6±0.6)Å. These properties have been 
found to contribute significantly towards 
interactions of substrates with Pgp [7-12]. 
 
Different research groups have successfully 
developed QSAR models using combination 
of 2D and 3D descriptors. Both qualitative 
and quantitative molecular studies offer 
insights in this direction through different in 
silico models and thereby distinguish Pgp 
substrates from its non-substrates. Such 
models are very useful for the selection of 
lead candidate and thereby to reduce the 

attrition rate in the later stages of 
development [10-20].  
 
The present paper describes development of 
binary-QSAR model using QuaSAR-binary 
module of Molecular Operating 
Environment (MOE) software (Ver-
2003.02) [22] on a dataset of 123 
compounds, assayed by monolayer efflux 
assay (MDR1-MDCK cell line) for Pgp 
activity [5,21], It predicts compound as Pgp 
substrate or non-substrate. 
 
2.  Methodology 
 
2.1. Collection and Classification of 
Substrates and Non-substrates of Pgp 
 
Compounds (substrates and non-substrates) 
assayed under uniform condition by 
monolayer efflux assay using MDR1-
MDCK cell lines were collected from the 
literature [5,21]. In binary methodology, 
before building the QSAR model, one need 
to assign active (substrates) or inactive (non-
substrate) category to the compounds. In this 
study we used Pgp efflux ratio [Papp B→A 

/Papp A→B], obtained from the monolayer 
efflux assay, to assign substrate or non-
substrate category to the compounds. 
Classification of substrates and non-
substrates was performed in accordance with 
the following criteria: 

 
Activity =1    [if a) efflux ratio > 2.0, or 
 
(Pgp substrate)         b) efflux ratio is 
between 1.5 to 2.0 and dropped to ~1.00 in 
presence of specific Pgp inhibitor 
GF120918] 
and         
Activity =0  [if a) efflux ratio < 1.5, or 

 
(Pgp non-substrate) b) efflux ratio is 
between 1.5 to 2.0 and not dropped to ~1.00 
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in presence of specific Pgp inhibitor 
GF120918] 
 
Classification of compound as a substrate or 
a non-substrate was made on the basis of 
above said efflux ratio [5,21] and binary 
value ‘1’ assigned to Pgp substrates (active) 
and ‘0’ for Pgp non-substrates (inactive). 
Thus, total of 123 compounds assayed under 
uniform conditions and having high quality 
in vitro results, classified as substrates and 
non-substrates of Pgp, in which 99 (36 - 
substrates, 63 - non-substrates) were used as 
training set to develop binary-QSAR model, 
and 24 (8 - substrates, 16 - non-substrates) 
were used as test set to evaluate 
performance of the model. 
 
2.2. Representation of Compounds 
 
Compounds were drawn using ChemDraw 
Ultra version 6.0.1 and converted into 3D 
structures using Chem3D Pro version 6.0 
[22]. 3D structures were then manually 
inspected to represent proper chirality, and 
then the geometry was optimized using 
molecular mechanics force field (MM2) 
method with rms gradient of 0.100. 
Molecular descriptors were calculated using 
MOE (Ver. 2003.02) and Cerius2 (Ver. 4.10) 
software [23,24]. Molecular structure of the 
training and test set compounds is given in 
supplementary material Figure (A&B). 
 
2.3. Molecular descriptors Selection, 
Definition with its Significance 
 
Twelve molecular descriptors computed 
from two different software, MOE and 
Cerius2, was used to build QSAR model. 
Descriptors were selected based on the 
knowledge about substrates and non-
substrates and their interaction with Pgp. 
These molecular descriptors are shown in 
Table 1. The description and significance of 
these molecular descriptors can be 

elaborated by understanding its 
physiological behavior. 
 
Descriptor “a_hyd” belongs to structural 
type and was used to quantify number of 
hydrophobic atoms present in a compound 
(Table 1). It can also be defined as 
pharmacophore atom type descriptor by 
assigning a type to each heavy atom in a 
compound using a rule based system. 
Ability of compound to cross the biological 
membrane was quantified in the form of 
partition coefficient descriptor (SlogP). 
“SlogP” i.e. log of the octanol/water 
partition coefficient (including implicit 
hydrogens) belongs to thermodynamic 
descriptor and is calculated using atomic 
contribution model [25]. Another descriptor, 
“Lip_violation”, was used to represent 
absorptive power or permeation of a 
compound. It depends on molecular weight, 
AlogP98, Lipinski H-bond acceptor and 
Lipinski H-bond donor of the compound 
[26]. The electronic descriptor 
“PEOE_VSA_FPPOS” (or 
Q_VSA_FPPOS) defines total positive polar 
van der Waals surface area, which can 
influence hydrogen bonding character. This 
charge dependent descriptors prefixed with 
PEOE_ or Q_ use the partial charges stored 
with each structure in the database which is 
the sum of the vi (van der Waals surface area 
of atom i calculated using a connection table 
approximation) such that qi (partial charge 
of atom i) is non-negative. Descriptors chi0, 
PHI and IAC-Total indicates the degree of 
flexibility, size, shape and connectivity of 
atoms and the un-saturation in the 
compound. “Chi” descriptor is refinement of 
shape index that takes into consideration the 
contribution of covalent radii and 
hybridization states, making the shape of the 
compound [27]. “PHI” descriptor is based 
on structural properties which restrict a 
compound being “infinitely flexible”, the 
model for which is an endless chain of 
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C(sp3) atoms. The structural features for 
infinite flexibility restriction include (i) 
fewer atom, (ii) presence of rings, (iii) 
branching and (iv) the presence of atoms 
with covalent radii smaller than those of 
C(sp3) [28]. To represent mixture of atomic 
contribution to molecular refractivity and 
their connectivity, the thermodynamic 
descriptor “GCUT_SMR_0” was used. 
Solubility, one of the main factors 
controlling permeation was quantified using 
“ADME_solubility” descriptor (Table 1) 
[29]. Probability of compound to become 
substrate of enzyme CYP2D6, a member of 
the cytochrome P450 mixed-function 
oxidase system, was quantified using 
“ADMET_CYP2D6_PROB” descriptor. 
The cytochrome P450 2D6 model predicts 
CYP2D6 enzyme inhibition using 2D 
chemical structure as input. The model was 
developed from known CYP2D6 inhibition 
data on a structurally diverse set of 100 
compounds where an ensemble of recursive 
partitioning trees was trained against 2D 
descriptors and 1D similarity data [30]. 
Number of atoms of type H_48 and N_66, 
used in calculation of AlogP98, were 
quantified using descriptor Atype_H_48 and 
Atype_N_66 respectively, and are presented 
in Table 1 [31]. 
 
2.4. Binary Methodology 
 
Binary QSAR method builds the predictive 
binary models through the use of highly 
significant probabilistic and statistical 
inference. The predictive capacity of binary 
QSAR is not interpolative, because data 
fitting is not used, and is based on 
generalizations substantiated by the 
experimental data. In this work we have 
used binary methodology, based upon 
statistical probability estimation, first 
introduced by Labute [32], for the 
development of binary QSAR model. It 
correlates structural properties of 

compounds with a “binary” expression of 
biological activity and calculates probability 
value in the form of: 1 = active => substrate 
and 0 = inactive=> non-substrate. The 
derived binary-QSAR model predict the 
probability of new compound(s) to be 
substrate or non-substrate of Pgp. Binary-
QSAR methodology have been successfully 
applied previously in several investigations 
such as estrogen receptor ligands, carbonic 
anhydrase II inhibitors and MAO inhibitors 
[33-35].  
 
Binary method uses results {(yi, xi)} of the 
experiment for a set of m compounds. yi is 
either 0 or 1 (either “inactive” or “active”) 
and xi are the vectors that correspond to a set 
of n molecular descriptors (xi1, xi2,…. xin), i.e.,   
xi=( xi1, xi2,…. xin ) 
The binary-QSAR analysis procedure is 
summarized in Figure 1. Briefly, a set of 
molecular descriptors are computed for each 
compound in a data set which is then 
transformed into a set of de-correlated and 
normalized set of variables, and the 
probability distribution is estimated based 
on Bayes’ theorem. Quality of a binary-
QSAR model is measured as follows: let m1 
represent the number of substrates, m0 the 
number of non-substrates, c1 the number of 
substrates correctly labeled by the QSAR 
model and c0 the number of non-substrates 
correctly predicted by the QSAR model. 
Then three parameters of performance are 
calculated as: (i) accuracy on substrate, 
[A1=c1/m1]; (ii) accuracy on non-substrate, 
[A0=c0/m0]; (iii) overall accuracy on all of 
the compounds, [A=(c0 + c1)/(m0 + m1)]. 
The details of binary-QSAR methodology 
have been illustrated by Labute [32]. The 
computational procedure used for 
developing binary-QSAR model is depicted 
below as flow chart (Figure 1).  
 
3.  Results and Discussion 
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3.1. Development of binary-QSAR model 
 
Binary-QSAR model was developed using 
123 compounds which had been assayed 
under uniform conditions in which 44 
compounds are substrates and 79 
compounds are non-substrates of Pgp. 
Compounds were grouped into training set 
(99 Compounds) and test set (24 
Compounds) based on their permeability 
value (Papp A→B ) [5,21]. Permeability was 
shown as a very significant factor affecting 
Pgp efflux [36]. While grouping the 
compounds it was assured that, both training 
and test set will contain nearly same range 
of permeability values so that robust model 
could be built for different sets of 
permeability values.  
 
The computational procedure for developing 
binary-QSAR model, using MOE software, 
is depicted in Figure 1. Compounds were 
first assigned binary value (1 or 0) based on 
its class (substrate or non-substrate) as 
explained above. Then twelve important 
descriptors as mentioned above, 
representing different physicochemical 
properties of compounds in training set, 
were used to build binary-QSAR model. 
Threshold value was set default and 
smoothing parameter (σ2) was optimized by 
testing the cross-validated accuracy of the 
model over several trial values. When 
σ

2=0.25 value was used, the cross-validated 
statistics gave accuracy of 50% on 
substrates, 92% on non-substrates, with total 
accuracy of 77% on the model. There is 
considerable improvement in the cross-
validated statistics of the model by 
decreasing the σ2 value further and 0.01 
gave the best statistics with accuracy of 92% 
on substrates, 100% on non-substrates with 
total accuracy of 97% on the model. 
 
3.2. Quality measurement of individual 
Molecular descriptor  

Quality of the 12 individual molecular 
descriptors in the training set of 99 
compounds was measured using MOE 
software. Percentage accuracy of each 
molecular descriptor to predict substrates 
and non-substrates of Pgp for this training 
set is presented in Table 2. Three parameters 
of performance (A, A0 and A1) were 
calculated for each descriptor (details given 
in “binary method” section). Total accuracy 
(A) - fraction of observations correctly 
predicted by the descriptor, accuracy on 
non-substrates (A0) - fractions of correctly 
predicted sample non-substrates, accuracy 
on substrates (A1) - fractions of correctly 
predicted sample substrates. The results 
indicate that the percentage predictive 
accuracy on non-substrates (A0) is better 
than that of substrates (A1) (Table 2). The 
total accuracy (A) of all the 12 information 
rich individual molecular descriptor showed 
more than 60% contribution and gave good 
statistical significance for building binary-
QSAR model (Table 2). Accuracy on A0 
might be affected because of the dominant 
number of 63 non-substrates as compared to 
36 substrates in the training set of 99 
compounds. Contribution of all 12 
individual molecular descriptors has 
minimized the biased effect, and showed 
good statistical significance on total 
accuracy (A). 
 
Pgp activity relates mainly to structural, 
electronic, thermodynamic and ADME 
properties of the compound and the 
descriptor space we have chosen cover all 
this aspects significantly. Biological 
significance of these descriptors is well 
correlated to the binding, transport and 
solubility of compounds. Molecular 
hydrophobicity is considered as brain uptake 
of drugs and the descriptors mainly 
contributing to this effect include a_hyd, 
Lip_violation and ADME_Solubility. This is 
because hydrophobicity is a major 



145 
ISSN: 2249 –4820 

Chemistry & Biology Interface, 2012, 2, 3, 140-156 
 

 

determining factor in a compound’s 
absorption, distribution in the body, 
penetration across vital membranes and 
biological barriers, metabolism and 
excretion. Besides predicting the likely 
transport of a compound around the body, it 
also impacts formulation, dosing, drug 
clearance, and toxicity. Hence it plays a 
critical role in helping late stage attrition in 
the drug discovery process. 
 
3.3. Robustness of binary-QSAR model 
 
Binary value and predicted probability 
values obtained using binary-QSAR 
methodology for training set of 99 
compounds is presented in Table 4. Quality 
of the binary-QSAR model was measured 
using three parameters of performance (A, 
A0 and A1) as given in “binary method” 
section. Model robustness also requires high 
compound to-variables ratio to be significant 
and is greater than 8.2 (99/12). The stability 
of the model is validated by its prediction 
accuracy on the training set using cross 
validation statistics. The sensitivity (i.e. 
ability to correctly identify substrates) and 
specificity (i.e. ability to correctly identify 
non-substrates) of developed binary-QSAR 
model is explained below. Cross-validated 
statistical accuracy of the model is presented 
in Table 3. This model has 11 principle 
components as shown in supplementary 
material-Table A. Correlation coefficient (in 
Table A)- indicates whether or not the 
substrate and non-substrate distributions are 
correlated (0 = perfectly correlated, 1 = 
perfectly uncorrelated). 
 
Developed binary-QSAR model is highly 
predictive and shows excellent cross-
validated statistics as shown in Table 3. 
Leave-one out (LOO) cross validation 
procedure was done by leaving one 
compound out, for building the model, and 
then testing the left out compound. Total 

percentage predictive accuracy on all the 
compounds in the training set was 96.9% 
(accuracy on its substrates and non-
substrates). Cross-validated predictive 
accuracy in training set was 100% on non-
substrates and 91.6% on substrates as shown 
in Table 3. The χ2 test of significance (p-
value) was also used to judge the quality of 
the model. The binary-QSAR model 
described above shown a highly significant 
p-value of 2.30e-017 for all the compounds 
and 1.16e-018 for the substrates/non-
substrates (Table 3). These low p-values 
indicate that the molecular descriptors and 
binary-QSAR model contributes in a 
significant way for the prediction of Pgp 
substrates and non-substrates. The p-value 
quoted under accuracy on actives 
(substrates)/inactives (non-substrates) is the 
probability that both these accuracies would 
differ from the "chance accuracy" as much 
as they do, if the substrates and non-
substrates in the QSAR model are 
uncorrelated with those in the sample. In 
other words, our binary-QSAR model is 
highly sensitive in identifying Pgp substrates 
and highly specific in identifying Pgp non-
substrates. Present dataset due to its 
structural diversity seems to be quite valid 
for LOO cross-validation analysis.  
 
Among 12 descriptors, Lipinski violation 
(Lip_violation) count descriptor predicted 
substrates with 30.6% accuracy while non-
substrates with accuracy of 92.1%, (Table 
2). The above Lipinski analysis clearly 
shows that absorption is an important 
determinant of Pgp efflux. This result is in 
concordance with experimental findings of 
efflux studies on drugs, which showed that 
unfavorable chemical features of P-gp 
substrates limit passive permeability and 
thus are more susceptible to P-gp-mediated 
efflux [5, 36]. Thus the compound with poor 
passive absorption has greater prevalence to 
become Pgp substrate and vice versa. 
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Another descriptor, number of hydrophobic 
atoms (a_hyd) have highest accuracy of 
61.1%, followed by descriptor IAC-Total of 
55.5% and descriptor PEOE_VSA_FPPOS 
of 52.8%. Significant contribution of 
descriptor (a_hyd) suggests hydrophobic 
interactions with Pgp, an important factor 
for becoming its substrate. The present 
analysis is in agreement with other in silico 
studies where it was shown that the multiple 
hydrophobic points are required for binding 
to Pgp [8-12]. 
 
Screening studies for Pgp drug interactions 
identified a number of clinically important 
drugs as Pgp substrates which are very 
diverse e.g. anthracyclines (doxorubicin, 
daunorubicin), alkaloids (reserpine, 
vincristine, vinblastine), specific peptides 
(valinomycin, cyclosporine), steroid 
hormones (aldosterone, hydrocortisone) and 
local anaesthetics (dibucaine) [37]. Even dye 
molecules (Rhodamine 123) and 
pharmaceutical excipients exhibited Pgp 
substrate activity. Examples of some non-
substrates are alprenolol, amantadine, 
ametryptyline, atenolol, biperidine, 
bromocryptine, etc. [38] These compounds 
show distinct differences in permeability, 
molecular weight and polar surface area. It 
was observed that almost all non-substrates 
are within the limits of the Lipinski’s rule of 
five. Most of the Pgp substrates belong to 
the upper limits of molecular weight (>500) 
and total polar surface area (>75). Our 
model also supports these observations viz 
Lipinski violation count (lip_violation) and 
number of hydrophobic atoms (a_hyd) is 
shown to be important descriptors to identify 
compounds as Pgp substrates and non-
substrates. It was also shown that 
unfavorable chemical features of Pgp 
substrates limits the passive permeability 
and hence become more susceptible to Pgp 
efflux. Thus poor passive absorption and 
higher hydrophobic interactions are 

important factor in making compounds 
substrate to Pgp.  
 
3.4. Validation of binary QSAR Model 
 
Robustness and the true test of any QSAR 
model’s performance is its accuracy on a set 
of compounds not included in the training 
set. Therefore, the developed binary-QSAR 
model was applied to an additional test set 
of 24 compounds, not included in the 
training set. Table 5 shows the test set 
compounds, its experimental efflux ratio 
(B→A/A→B), Pgp experimental status for 
substrate/or non-substrate, observed binary 
activity of compound for substrate-1/non-
substrate-0); predicted binary activity of 
compounds to be substrate/or non-substrate 
and predicted Pgp binary status of 
compounds. QSAR model correctly 
predicted 21/24 compounds (87.5%) as 
either substrates or non-substrates. Among 
eight substrates, six compounds correctly 
predicted by the in silico screen with overall 
prediction sensitivity of 75%. Better 
prediction specificity of 94.4% was obtained 
with 17 of the 18 non-substrates as shown in 
Table 5. A lower sensitivity, i.e., a higher 
rate of false negative predictions was 
expected to some extent due to non-substrate 
biased training data set.  
 
The three mispredicted (or outlier) 
compounds in the developed binary QSAR 
model are nortriptyline, erythromycin and 
diltiazem compounds. Nortriptyline 
compound was non-substrate, which was 
predicted as substrate while erythromycin 
and diltiazem substrates was predicted as 
non-substrates and is shown in Table 6. For 
nortriptyline, mean permeability Papp 
(A→B) is high, 337 nm/s (efflux ratio 1.39). 
In vitro monolayer efflux assay cannot 
accurately determine the substrate nature of 
highly permeable compounds. At the same 
time, calcein-AM efflux assay has 
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confirmed the binding of nortriptyline to the 
Pgp. Thus, QSAR model is likely correct in 
identifying this compound as substrate. The 
outlier erythromycin has a very limited 
permeability of 0.94 nm/s (efflux ratio 14.4) 
at which it is very difficult to accurately 
determine the property to become substrate 
of Pgp in the monolayer efflux assay. 
Diltiazem have efflux ratio of 1.53 or 1.64 
which suggest that it falls in non-confident 
zone (B→A/A→B ratio 1.5 to 2.0), where 
classification of compound as 
substrates/non-substrates is uncertain. In 
addition, diltiazem is absorbed almost 
completely through the intestine. This 
suggests that diltiazem is borderline 
substrate and has weak substrate activity 
towards Pgp [5,21]. The present results 
clearly suggest that false positive prediction 
on nortriptyline compound and false 
negative prediction on erythromycin and 
diltiazem compound (Table 6), derived from 
binary-QSAR model are due to experimental 
limitations of monolayer Pgp efflux assay. 
 
3.5 Practical implications of the Model 
 
Review of literature survey has shown 
different in silico qualitative and 
quantitative molecular models to offer 
insights into the molecular determinants of 
Pgp substrates, non-substrates and/ or 
inhibitors. Attempts to develop QSARs for 
Pgp substrates/non-
substrates/inhibitors/modulators, to link their 
physico-chemical properties with the 
biological activity, have been dealt with the 
difficulties. Different groups have 
successfully linked combination of 2D and 
3D physicochemical properties of 
compound, to represent their substrate and 
non-substrate nature towards Pgp, using 
different statistical approaches [10, 13-
18,39]. It has been observed that more 
complex descriptors and powerful statistical 
methods of molecular modeling are 

necessary for identification of Pgp substrates 
and non-substrates [17]. Therefore we 
decided to develop an in silico QSAR 
model, to surrogate experimental monolayer 
Pgp efflux assay, using different topological 
and physicochemical descriptors. 
 
Further, carrying out in vitro monolayer Pgp 
efflux assay is a cumbersome procedure and 
requires lot of laboratory work (culturing 
MDCK type II cells, maintaining Pgp 
expression, simultaneous determination of 
permeability, end point determination using 
LC/MS/MS). Also this assay experiments 
enable determination of substrate activity of 
only dozen compounds per week. But in 
silico binary-QSAR model can rapidly and 
reliably identify the compounds to be 
substrate from their structure. This will 
circumvent the requirement of time, 
manpower, hard work and money in 
performing in vitro monolayer Pgp efflux 
assay. The present model can also prioritize 
small subset of potential hit compounds in 
chemical libraries or potential lead 
compounds to be obtained from high 
throughput screening, which will further 
guide in performing in vitro monolayer Pgp 
efflux assay experiments.  
 
4. Conclusions 
 
We have developed binary-QSAR model 
using dataset of 123 compounds and 12 
information rich descriptors, for predicting 
substrates and non-substrates of Pgp. 
Lipinski violation count (lip_violation) and 
number of hydrophobic atoms (a_hyd) are 
important descriptors for identifying 
compounds as substrates and non-substrates 
of Pgp. The present result indicated poor 
passive absorption and higher hydrophobic 
interactions is significant feature for making 
compounds substrate of Pgp. However, the 
three wrong predictions in test set were 
found to be because of limitation of the in 
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vitro monolayer Pgp efflux assay. This 
model can be seen as in silico simulation of 
in vitro monolayer Pgp efflux assay, and can 
be used in the early stage of drug discovery 
to prevent the compounds from its late stage 
attrition. 
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Table 1. Molecular descriptors and its corresponding software 

 

Table 2. Percentage predicted accuracy of individual molecular descriptor. 
 

S. No. Molecular Descriptor A (%) A0 (%) A1 (%) 
1 GCUT_SMR_0 65.70 90.50 22.20 
2 SlogP 67.70 85.70 36.10 
3 Lip_violation 69.70 92.10 30.60 
4 PEOE_VSA_FPPOS 70.70 81.00 52.80 

Descriptor-tag Descriptor type Definition 
Software 

used  
a_hyd Structural descriptorNumber of hydrophobic atoms 

MOE 

SlogP Thermodynamic descriptorLog of the octanol/ water 
partition coefficient 

Lip_violation ADME descriptorAbsorptive power of compound 

PEOE_VSA_FPPOS Electronic descriptors Fractional positive polar van 
der Waals surface area. 

Chi0 Topological descriptor Atomic connectivity index 
(order 0) 

GCUT_SMR_0 
Thermodynamic descriptor Mixture of atomic 
contribution to molecular refractivity and their 
connectivity  

ADME_Solubility ADME descriptor Solubility factor controlled by 
absorption 

Cerius2 

ADMET_CYP2D6_PROB ADME descriptor Probability of compound to become 
substrate of enzyme CYP2D6 

Atype_N_66 Thermodynamic descriptor Number of atoms of type 
N_66 used in calculation of AlogP98 

Atype_H_48 Thermodynamic descriptor Number of atoms of type 
H_48, used in calculation of AlogP98 

PHI Topological descriptor molecular flexibility index 

IAC-Total 
Information content descriptor The atoms in the 
compound are partitioned into equivalence classes 
corresponding to their atomic numbers 
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5 chi0 71.70 85.70 47.20 
6 a_hyd 76.80 85.70 61.10 
7 ADME_Solubility 68.70 87.30 36.10 
8 ADMET_CYP2D6_PROB 66.70 90.50 25.60 
9 Atype_N_66 64.60 90.50 19.40 
10 Atype_H_48 67.70 95.20 19.40 
11 PHI 70.70  85.70 44.40 
12 IAC-Total 74.70 85.70 55.60 

 

Table 3. Cross-validated statistics of Pgp substrates and non-substrates in training set of 99 
compounds. 

 
Cross-validated 

 statistics 
Chance accuracy 

Total percentage accuracy (A) 96.9% 55.0% 
χ2 test of significance (p-value)  2.30e-017  
Accuracy on substrates (A1) 91.6% 33.0% 
Accuracy on non-substrates (A0)  100.0% 67.0% 
χ2 test of significance (p-value)  1.16e-018  

 

Table 4. Training set compounds; Pgp efflux ratio (B→A/A→B); observed and predicted binary 

activity of compounds (Substrate-1/ Non-substrate-0). 

Compound Name (Therapeutic 
Indication) 

(B→A/A→B) 
Ratioa,b 

Pgp 
statusc 

(exptl.) 

Binary 
activity 

(observed) 

Binary 
activity 

(predicted) 

Pgp statusc 
(predicted) 

Acrivastine (antihistamine) 3.71 S 1 0.99 S 
Amantadine (antiviral, 
antiparkinsonian) 

0.84a,0.95b N 0 0 N 

Amitriptylline (antidepressant) 1.34 N 0 0 N 
Amprenavir (antiviral) 32.4a,29.0b S 1 0.94 S 
Astemizole (antihistamine) 2.22 S 1 0.99 S 

Atenolol (antihypertensive) 1.24 N 0 0 N 

Biperiden (antiparkinsonian) 0.95 N 0 0 N 
Bromocriptine 
(antiparkinsonian) 

1.26 N 0 0 N 

Bufuralol (antihypertensive) 0.78 N 0 0 N 

Buspirone (anxiolytic) 0.95 N 0 0 N 

Carbamazepine (anticonvulsant) 0.98 N 0 0 N 

Cetirizine (antihistamine) 8.65 S 1 0.99 S 

Chloroquine (antimalerial) 3.83 S 1 1 S 
Chlorpheneramine 
(antihistamine) 

1.14a,0.93b N 0 0 N 

Chlorpromazine (antipsychotic) 1.09a,1.27b N 0 0 N 
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Chlorprothixene (antipsychotic) 1.26 N 0 0 N 

Cimetidine (anti-ulcerative) 2.19a,4.77 b S 1 1 S 

Clarythromycin (antibiotic) 31.3 S 1 1 S 

Clemastine (antihistamine) 1.29 N 0 0 N 

Clomipramine (antidepressant) 1.42 N 0 0 N 

Colchicine (antiarthritis) 11.34 S 1 0.94 S 

Cyclobenzaprine (muscle 
relaxer) 

0.97 N 0 0 N 

Daunorubicin (antineoplastic) 14.2 S 1 1 S 

Desipramine (antidepressant) 1.03 N 0 0 N 

Dexamethasone (corticosteroid) 12.4 S 1 1 S 
Diphenhydramine 
(antihistamine) 

0.91 N 0 0 N 

Dipyridamole (vasodilating 
agent) 

22.7 S 1 1 S 

Domperidone (antiemetic) 31.2 S 1 1 S 

Doxapram (respiratory 
stimulant) 

1.41 N 0 0 N 

Doxepin (antidepressant) 1.15 N 0 0 N 

Doxorubicin (antineoplastic) 0.67 N 0 0 N 

Doxylamine (antihistamine) 0.84 N 0 0 N 

Eletriptan (antimigraine) 31.5a,44.7b S 1 0.94 S 

Emetine (antiprotozoal) 29.2 S 1 1 S 

Etoposide (antineoplastic) 2.8 S 1 1 S 

Famciclovir (antiviral) 3.17 S 1 1 S 

Flumazenil (benzodiazepine 
antagonist) 

0.92 N 0 0 N 

Fluoxetine (antidepressant) 1.18 N 0 0 N 

Flurazepam (anxiolytic) 0.88 N 0 0 N 

Fluvoxamine (antidepressant) 1.2 N 0 0 N 

Guanabenz (antihypertensive) 0.91 N 0 0 N 

Haloperidol (antipsychotic) 1.04 N 0 0 N 

Hoechst 33342 (mutagent) 7.75 S 1 1 S 

Imipramine (antidepressant) 1.05 N 0 0 N 
Indomethacin 
(antiinflammatory) 

0.97 N 0 0 N 

Itraconazole (antifungal) 0.97 N 0 0 N 

Ketoconazole (antifungal) 1.02 N 0 0 N 

Labetolol (antihypertensive) 8.85 S 1 1 S 
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Lidocaine (anesthetic) 0.99a,0.83b N 0 0 N 

Loratidine (antihistamine) 1.9 S 1 0.99 S 

Lorcainide (antiarrythmic) 1.45 N 0 0.01 N 
Mannitol (diuretic) 0.82a,0.88b N 0 0 N 
Maprotiline (antidepressant) 1.05 N 0 0 N 

Mebendazole (anthelmintics) 0.91 N 0 0 N 

Meprobamate (anxiolytic) 0.97 N 0 0 N 

Mequitazine (antihistamine) 2.81 S 1 0.96 S 

Metergoline(analgesic, 
antipyretic) 

1.21 N 0 0 N 

Methotrexate (antineoplastic) 0.67 N 0 0 N 

Methysergide (antimigraine) 4.33 S 1 0.99 S 

Metoprolol (antihypertensive) 1.21 N 0 0 N 
Midazolam (anesthetic) 0.81a,1.0b N 0 0 N 
Mitoxantrone (antineoplastic) 3.38 S 1 1 S 

Nalbuphine (analgesic) 2.17 S 1 1 S 

Naloxone (narcotic antagonist) 1.29 N 0 0 N 

Naltrexone (narcotic antagonist) 1.04 N 0 0 N 

Nelfinivir (antiviral) 8.86a,22.3b S 1 1 S 

Neostigmine (cholinergic agent) 1.81a,2.23b S 1 1 S 

Nicardipine (antihypertensive, 
antianginal) 

1.08 N 0 0 N 

Nifedipine (antihypertensive, 
antianginal) 

1.26 N 0 0 N 

Nitrazepam (anticonvulsant) 1.17 N 0 0 N 

Nitrendipine (antihypertensive) 0.8 N 0 0.01 N 

Nordazepam (anxiolytic) 0.93 N 0 0 N 

Noscapine (antitussive) 1.03 N 0 0 N 

Oxprenolol (antihypertensive) 1.37 N 0 0 N 

Perphenazine (antipsychotic) 1.47 N 0 0.04 N 

Pheniramine (antihistamine) 1.41 N 0 0.04 N 

Pirenzapine (anti-ulcerative) 3.63 S 1 1 S 

Prazosin (antidepressant) 4.63 S 1 1 S 

Procyclidine (antiparkinsonian) 0.95 N 0 0 N 

Progabide (anticonvulsant) 0.88 N 0 0.11 N 

Promethazine (antihistamine) 1.27 N 0 0 N 

Propranolol (antihypertensive) 1.04a,1.04b N 0 0.02 N 

Protriptylene (antidepressant) 2.37 S 1 0.55 S 

Puromycin (antibiotic) 3.1 S 1 1 S 



152 
ISSN: 2249 –4820 

Chemistry & Biology Interface, 2012, 2, 3, 140-156 
 

 

Quinidine (antiarrythmic) 27.2 S 1 1 S 

Reserpine (antihypertensive) 3.71 S 1 1 S 

Scopolamine (antiemetic) 1.14 N 0 0 N 

Selegiline (antiparkinsonian) 0.76 N 0 0 N 
Sulfasalazine (anti-
inflammatory, bowel) 

1.65 N 0 0 N 

Terfenadine (antihistamine) 4.66a,2.88b S 1 1 S 
Testosterone (androgen) 0.73 N 0 0.08 N 

Trazodone (antidepressant) 0.94 N 0 0 N 

Trimethoprim (antibacterial) 3.61a,1.94b S 1 1 S 

Trimipramine (antidepressant) 0.92 N 0 0 N 

Vincristine (antineoplastic) 6.31 S 1 1 S 

Vinorelbine (antineoplastic) 69.8 S 1 1 S 

Yohimbine (antiadrenergic) 1.17 N 0 0 N 

Zolmitriptan (antimigraine) 2.48 S 1 0.97 S 

Zolpidem (sedative) 1.14 N 0 0 N 
aValues taken from (5), bValues taken from (21). 
c Abbreviations: S, substrate; N, non-substrate. 

Table 5. Test set compounds; Pgp efflux ratio (B→A/A→B); observed and predicted binary 

activity of compounds (Substrate-1/ Non-substrate-0). 

Compound Name (Therapeutic 
Indication) 

B→A/A→B 
Ratioa,b 

Pgp 
statusc 

(exptl.) 

Binary 
activity 

(observed) 

Binary 
activity 

(predicted) 

Pgp statusc 

(predicted) 

Alprenolol (antihypertensive) 1.01 N 0 0 N 

Antipyrine (local analgesic) 0.94 N 0 0 N 

Clonidine (antihypertensive) 0.99 N 0 0 N 

Cyclosporin A(immunosuppresives) 9.61 S 1 1 S 

Diltiazem (anti-anginal) 1.64a,1.53b S 1 0 N 

Erythromycin (antibiotic) 14.4 S 1 0 N 

Guanfacine (antihypertensive) 1.23 N 0 0 N 

Indinavir (antiviral) 20.3a,24.6b S 1 0.9 S 

Ketamine (anesthetic) 0.93 N 0 0 N 

Levomeprazine (antipsychotic) 1.54 S 1 0.79 S 

Loperamide (antidiarrheal) 7.77 a,9.9 b S 1 1 S 

Mephentermine (vasopressor) 0.87 N 0 0 N 

Mexilitene (antiarrythmic) 0.87 N 0 0 N 

Monensin (antibiotic) 2.88 S 1 1 S 

Nortriptylene (antidepressant) 1.39 N 0 0.91 S 
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aValues taken from [5], bValues taken from [21]. 
c Abbreviations: S, substrate; N, non-substrate. 
 

Table 6. Experimental mean apical to basolateral permeability Papp A to B with BA/AB ratio 
along with the observed and predicted binary activity for the unpredicted (or outlier) compounds. 

 

Compound 
Name 

Mean Papp 
A to Ba 
(nm/s) 

BA/AB 
Ratioa,b 

(In vitro 
analysis) 

Binary 
activity 

(observed) 

Pgp 
statusc 

(observed) 

Binary 
activity 

(predicted) 

Pgp 
statusc 

(predicted) 

Nortriptyline 337b 1.39 0 N 0.91 Sd 
Erythromycin 0.94a 14.4 1 S 0.00 Ne 

Diltiazem 413a, 430b 1.64, 1.53 1 S 0.00 Ne 
aValues taken from [5], bValues taken from [21].  
cAbbreviations S, substrate; N, non-substrate. 
dFalse positive; eFalse negative 

Practolol (antiarrythmic) 1.32 N 0 0 N 

Promazine (antipsychotic) 1.15 N 0 0 N 
Pyridostigmine (cholinergic agent) 1.24 N 0 0 N 
Ranitidine (anti-ulcerative) 1.35 N 0 0 N 

Ritonavir (antiviral) 54.4 S 1 1 S 

Sumatriptan (antimigraine) 1.37a,1.48b N 0 0 N 

Tacrine (cognitive stimulant) 0.93 N 0 0 N 

Warfarin (anticoagulant) 0.83 N 0 0 N 

Zimeldine (antidepressant) 1.01 N 0 0.13 N 
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Figure 1. Flow chart of binary-QSAR methodology implemented in MOE. 

Binary-QSAR Model 

QSAR Table 

Principle Component Analysis 
(PCA) 

Compound 

Conditional Probability Analysis 
(Bayes’ Theorem) 

Compounds Activity MW SlogP chi0 - - n 
1 0 314 0.93 11.33 - - - 
2 1 410 0.27 15.66 - - - 
3 0 250 0.67 20.15 - - - 
4 0 275 0.68 22.36 - - - 
. 1 - - - - - - 
. 1 - - - - - - 
. 0 - - - - - - 
m 0 - - - - - - 
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